Make your own free website on Tripod.com

 

Conteúdo deste artigo:

bulletQuímica
bulletO Escopo da Química
bulletQuímica Analítica
bulletQuímica Inorgânica
bulletQuímica Orgânica
bulletBioquímica
bulletFísico-Química 
bulletMetodologiada Química
bulletQuímica e Sociedade

Química

É a ciência que lida com as propriedades, composição e estrutura das substâncias (definidas como elementos e compostos), as transformações que com elas ocorrem e a energia que é liberada ou absorvida durante esses processos. Toda substância, quer seja natural ou produzida artificialmente, é constituída de um ou mais das mais de cem espécies de átomos que foram identificados como elementos. Estes átomos, por sua vez, são constituídos por partículas mais elementares, que são as estruturas básicas das substâncias químicas; não existe nenhuma quantidade de ouro, oxigênio, mercúrio ou prata, por exemplo, menor que um átomo desta substância. A química, no entanto, não está preocupada com o domínio subatômico, mas com as propriedades dos átomos e as leis que governam suas combinações e como o conhecimento destas combinações podem ser usados para propósitos específicos.

O grande desafio na química é o desenvolvimento de uma explicação coerente do complexo comportamento dos materiais, por que eles são como aparecem, o que os dá suas propriedades intrínsecas, e como interações entre substâncias diferentes podem formar novas substâncias, e a destruição das originais. Nas primeiras tentativas para entender o mundo material em termos racionais, os químicos desenvolveram teorias da matéria que explicam satisfatoriamente tanto o estado permanente quanto as mudanças. A maneira ordenada como átomos "indestrutíveis" formam moléculas pequenas e grandes, ou combinações longas de átomos intercalados, é geralmente aceita como a base do estado de permanência, enquanto que a reorganização dos átomos ou moléculas em arranjos diferentes são referidas em teorias de estados de mudança. Assim, química envolve o estudo da composição atômica e do geometria estrutural das substâncias, bem como as variadas interações entre substâncias que podem promover reações repentinas e violentas. 

A química também preocupa-se com a utilização de substâncias naturais e com a criação de novas, artificiais. Cozimento, fermentação, manufatura de vidro e metalurgia são processos químicos que datam dos primórdios da civilização. Hoje, vinil, teflon, cristais líquidos, semicondutores e supercondutores representam os frutos da tecnologia química. O século XX presenciou avanços dramáticos na compreensão da maravilhosa e complexa química dos organismos vivos, e a interpretação molecular da saúde e da doença despertam grandes expectativas. A química moderna, sustentada por instrumentos cada vez mais sofisticados, estuda materiais menores que um simples átomo e maiores e mais complexos que o DNA (Ácido Desoxirribonucleico), que contém milhões de átomos. Novas substâncias podem ser projetadas para apresentar características desejadas e então sintetizados.

A velocidade com que o conhecimento químico continua crescendo é espantosa! Até agora, mais de 8.000.000 de substâncias químicas diferentes, naturais ou artificiais, foram caracterizadas e produzidas. Este número era menor que 500.000 antes de 1965.

Intimamente relacionados com os desafios intelectuais da química são aqueles relativos à indústria. Em meados do século XIX o químico alemão Justus von Liebig comentou que o desenvolvimento de uma nação poderia ser medido pela quantidade de ácido sulfúrico produzido. Esse ácido, essencial para muitos processos de manufatura, continua ainda hoje sendo o principal produto químico produzido nos países industrializados. Como Liebig reconheceu, um país que produza grandes montantes de ácido sulfúrico possui uma indústria química forte e, por conseqüência, uma forte economia. A produção, distribuição e utilização de uma larga escala de produtos químicos é comum em todos os países altamente desenvolvidos. De fato, pode-se dizer que a "idade do ferro" da civilização está sendo substituída pela "idade do polímero", pois em alguns países o volume total de polímeros produzidos excede o de ferro.

Voltar ao topo

O Escopo da Química

Há muito tempo já não é possível para uma única pessoa possuir todo o conhecimento da química. Por isso as pessoas dividem seus interesses em áreas específicas da química para poderem se comunicar de acordo com eles. Com o passar do tempo um grupo de químicos com interesses de pesquisas específicos tornaram-se os fundadores de uma área de especialização. Essas áreas de especialização emergiram nos primórdios da história da química, como por exemplo química orgânica, inorgânica, físico-química, química analítica e industrial, além da bioquímica, e continuam tendo grande interesse. Houve, entretanto, um crescimento muito pronunciado nas áreas de polímeros, química ambiental e medicinal durante o século XX. Além disso, muitas especialidades novas continuam a surgir, como por exemplo pesticidas, química forense e computacional.  

Voltar ao topo

Química Analítica

A maior parte dos materiais que ocorrem naturalmente na Terra, como madeira, minerais ou o próprio ar são misturas de muitos compostos diferentes e substâncias químicas distintas. Cada substância pura (como oxigênio, ferro ou água) possui uma gama de propriedades características que lhes dá sua identidade química. Ferro, por exemplo, é um metal comumente prateado brilhante que funde a 1.535ºC , é muito maleável e combina facilmente com oxigênio para formar substâncias como hematita e magnetita. A detecção de ferro em uma mistura metálica, ou em um composto como a magnetita, é relativa a uma área da química analítica denominada análise qualitativa. A medição do teor real de uma determinada substância em uma mistura é chamada de análise quantitativa. A medição analítica quantitativa determina, por exemplo, que o ferro constitui 72,3%, em massa, da magnetita, e o mineral é normalmente visto como uma areia escura ao longo das praias e bancos de areia.

Através dos anos, os químicos descobriram reações que indicam a presença de muitas substâncias elementares de elementos químicos específicos, mesmo em quantidades muito pequenas. A coloração amarela proporcionada a uma chama em contato com sódio é visível se a amostra que está sendo incinerada possuir uma quantidade menor que uma parte por bilhão (ppb) de sódio. Estes testes analíticos permitiram aos químicos identificar os tipos e quantidades de impurezas em muitas substâncias e a determinar propriedades de materiais muito puros. As substâncias utilizadas em experimentos comuns de laboratório normalmente possuem níveis de impurezas menores que 0,1%. Para aplicações especiais, algumas podem possuir níveis menores que 0,001%. A identificação de substâncias puras e análises de misturas químicas permitem que todas as outras disciplinas químicas se desenvolvam.

A química analítica nunca teve tanta importância quanto nos dias de hoje. A demanda por uma grande variedade de alimentos saudáveis, energia abundante, bens de consumo e técnicas de laboratório tomam um papel de destaque no desenvolvimento das sociedades modernas. Nunca antes o tratamento dos resíduos químicos foi levado tão a sério quanto hoje. A destruição do meio ambiente ocorre desde o surgimento da civilização, e os problemas com a poluição cresceram proporcionalmente a população mundial. As técnicas da química analítica estão concentradas também em manter seguro o meio ambiente. As substâncias indesejáveis nas águas, ar, solo e alimentos devem ser identificadas, seu foco de origem identificado e técnicas economicamente viáveis para sua remoção e neutralização devem ser desenvolvidas. Uma vez que os poluentes atingiram altas concentrações, tornou-se urgente a detecção de substâncias tóxicas a níveis muito abaixo dos nocivos. Químicos analíticos trabalham para desenvolver técnicas e instrumentos cada vez mais acurados e sensíveis. 

Instrumentos de análise sofisticados, posteriormente acoplados a computadores, promoveram a precisão necessária para os químicos identificarem substâncias e atingirem baixíssimos níveis de detecção. Uma técnica analítica largamente utilizada é a cromatografia gasosa (CG), que separa diferentes componentes de uma mistura gasosa passando-a através de uma coluna longa e estreita preenchida por um material que interaja de maneira adequada com esses componentes. Essa diferente interação faz com que os gases passem através da coluna com diferentes velocidades. Enquanto os gases separados fluem pela coluna, pode-se passá-los apor outro instrumento analítico denominado espetctrômetro de massa MS), que separa as substâncias de acordo com a massa de seus íons constituintes. A combinação CG-MS pode rapidamente identificar individualmente os componentes de uma mistura química em concentrações que podem ser menores que uma parte por bilhão. Sensibilidades iguais ou maiores podem ser obtidas quando técnicas adequadas forem utilizadas, como absorção atômica, polarografia, ativação de nêutrons, espectrometria de plasma, etc. A velocidade das inovações instrumentais é tal que os instrumentos analíticos tornam-se obsoletos 10 anos após seu desenvolvimento. Os instrumentos modernos são mais acurados e rápidos, e são também empregados nas químicas ambiental e medicinal. 

Voltar ao topo

Química Inorgânica

A química moderna, que data, aproximadamente, da aceitação da lei de conservação de massa, no final do século XVIII, focou inicialmente aquelas substâncias que não estavam associadas a seres vivos. O estudo destas substâncias, que normalmente possuem muito pouco ou nenhum carbono, constitui a disciplina denominada química inorgânica. Os estudos iniciais tentavam identificar as substâncias mais simples - chamadas de elementos - que são os constituintes de todas as substâncias mais complexas. Alguns desses elementos, como ouro e carbono, são conhecidos desde a antigüidade, e muitos outros foram descobertos e estudados durante o século XIX e início do século XX. Hoje, mais de 100 são conhecidos. O estudo de compostos inorgânicos simples, como o cloreto de sódio (sal de cozinha comum) levou ao desenvolvimento de alguns conceitos fundamentais da química moderna, como por exemplo a lei das proporções em massa. Essa lei estabelece que por mais pura que seja uma substância química, seus elementos constituintes estão sempre presentes em proporções fixas em massa (por exemplo, para cada 100g de cloreto de sódio existem exatamente 39,3 gramas de sódio e 60,7 gramas de cloreto). A forma cristalina do sal consiste em átomos de sódio e cloreto intercalados, havendo um átomo de sódio para cada átomo de cloreto. Como é formado por apenas dois elementos, cloro e sódio, é chamado de substância binária.

Compostos binários são muito comuns na química inorgânica, e não possuem grande variedade estrutural. Por este motivo, o número de compostos inorgânicos é limitado apesar do grande número de elementos que podem reagir entre si. Se três ou mais elementos são combinados em uma substância, as possibilidades estruturais tornam-se maiores. 

Após um período de aquiescência no início do século XX, a química inorgânica tornou-se novamente uma excitante área de pesquisas. Compostos de boro e hidrogênio, conhecidos como boranos, possuem propriedades estruturais únicas que forçaram a uma mudança no entendimento da arquitetura de moléculas inorgânicas. Algumas dessas substâncias possuem propriedades estruturais que antes acreditava-se que ocorriam apenas em compostos de carbono, e alguns polímeros inorgânicos foram produzidos. 

Cerâmicas são materiais compostos de elementos inorgânicos combinados com oxigênio. Por séculos os objetos cerâmicos foram produzidos aquecendo-se fortemente uma pasta de minerais em pó. Apesar de materiais cerâmicos serem duros e estáveis a temperatura muito elevadas, eles são normalmente quebradiços. Atualmente, as cerâmicas são fortes o suficiente para serem utilizadas como peças das turbinas de aviões. Existe a esperança de que as cerâmicas irão um dia substituir o aço em componentes de motores de combustão interna. Em 1987, uma cerâmica especial contendo ítrio, bário, cobre e oxigênio, cuja fórmula aproximada é YBa2Cu3O7 foi descoberta como um supercondutor a temperaturas aproximadas de 100K. Um supercondutor não oferece resistência à passagem de uma corrente elétrica, e esse novo tipo de cerâmica pode ser bem utilizada em aplicações elétricas e magnéticas. A produção de um supercondutor cerâmico é tão simples que pode ser preparado em um laboratório ginasial. Esta descoberta afirma a imprevisibilidade da química, como descobertas fundamentais podem continuar ocorrendo com equipamentos simples e materiais baratos. 

Muitas das mais interessantes descobertas na química inorgânica têm ligação com outras disciplinas. A química dos organometálicos investiga compostos que contém elementos inorgânicos combinados com unidades ricas em carbono. Muitos compostos organometálicos têm uma grande importância industrial como catalisadores, que são substâncias capazes de acelerar a velocidade de uma reação mesmo quando presentes em quantidades muito pequenas. Algum sucesso foi obtido no uso desses catalisadores na conversão de gás natural em substâncias mais interessantes quimicamente. Os químicos também criaram grandes moléculas inorgânicas que contém uma pequena quantidade de átomos metálicos, como platina, cercados por diferentes estruturas químicas. Algumas destas estruturas, denominadas clusters metálicos, possuem características metálicas, enquanto outras reagem similarmente a sistemas biológicos. Traços de metais são essenciais nos processos biológicos como a respiração, funções nervosas, e metabolismo celular. Processos desta natureza são objeto de estudo da química bioinorgânica. Tempos atrás, acreditava-se que as moléculas orgânicas representassem a forma de distinguir as propriedades químicas de criaturas vivas. Hoje sabe-se que a química inorgânica também tem papel vital nessa área. 

Voltar ao topo

Química Orgânica

Compostos orgânicos são baseados na química do carbono. O carbono é único na variedade e tamanho das estruturas que podem surgir das conexões tridimensionais de seus átomos. O processo de fotossíntese converte dióxido de carbono e água em compostos como oxigênio e carbohidratos. Tanto a celulose, substância que dá estrutura rígida às plantas, e o amido, o produto de armazenamento de energia nas plantas, são carbohidratos poliméricos. Carbohidratos simples produzidos por fotossíntese constituem a matéria-prima para os compostos orgânicos mais complexos encontrados nos reinos animal e vegetal. Quando combinados com quantidades variáveis de oxigênio, hidrogênio, nitrogênio, enxofre, fósforo e outros elementos, as possibilidades estruturais dos compostos de carbono tornam-se ilimitadas, e seu número excede em muito o total de todos os compostos não orgânicos. 

O principal foco da química orgânica é o isolamento, purificação e o estudo estrutural dessas substâncias naturais. Muitos produtos naturais são simples moléculas, como por exemplo o ácido fórmico (HCO2H) das formigas e o álcool etílico (C2H5OH) formado pela fermentação das frutas. Outros produtos naturais, como a pinicilina, vitamina B12, proteínas e ácidos nucleicos são extremamente complexos. O isolamento de substâncias puras de seus organismos naturais torna-se difícil devido à baixa concentração que pode es ar presente. Uma vez isolados na forma pura, entretanto, técnicas instrumentais modernas podem revelar detalhes estruturais de quantidades pesando menos que um milhonésimo de grama. A correlação entre as propriedades químicas e físicas dos compostos com suas características estruturais é de domínio da química orgânica física. Uma vez conhecidas as características estruturais dos compostos, estes podem ser divididos de acordo com classes semelhantes denominadas grupos funcionais. Uma vez conhecido o grupo funcional de uma substância, outras podem ser produzidas para apresentar os mesmos efeitos desejáveis. O preparo, sob condições controladas de laboratório, de compostos específicos é denominado síntese química. Alguns produtos são mais fáceis de sintetizar que coletá-los e purificá-los de suas fontes naturais. Toneladas de vitamina C, por exemplo, são sintetizadas anualmente. Muitas substâncias sintéticas apresentam novas propriedades que as promove usos especiais. Plásticos são um exemplo, como muitos fármacos e produtos químicos para agricultura. 

Um desafio constante para a síntese química é a complexidade estrutural da maioria dos compostos orgânicos. Para sintetizar uma substância desejada, os átomos devem ser colocados juntos na ordem correta e com as propriedades tridimensionais próprias. Do mesmo modo que uma pilha de tijolos e concreto podem ser arranjados de maneiras diferentes para construir prédios diferentes, também um número determinado de átomos podem ser coloca os juntos de várias maneiras para produzir diferentes moléculas. Apenas um arranjo estrutural dentre as muitas possibilidades será idêntica à molécula no meio natural. O antibiótico eritromicina, por exemplo, contém 37 átomos de carbono, 67 de hidrogênio e 13 de oxigênio ao redor de um único átomo de nitrogênio. Mesmo quando colocados juntos na ordem correta, esses 118 átomos podem dar origem a 262.144 estruturas diferentes, onde apenas uma possui as características da eritromicina natural. 

A grande abundância de compostos orgânicos, seu papel fundamental na química da vida e sua diversidade estrutural tornou seu estudo especialmente desafiador e excitante. A química orgânica é a maior área de especialização entre os vários campos da química. 

Voltar ao topo

Bioquímica

O entendimento da química de corpos inanimados durante o século XIX, desviou esforços para interpretar os processos biológicos dos organismos vivos em termos de estrutura molecular e reatividade, que permitiu o surgimento da bioquímica. Bioquímicos empregam técnicas e teorias da química para explicar a base molecular da vida. Um organismo é investigado segundo a premissa de que seus processos biológicos são conseqüência de milhares de reações químicas ocorrendo de maneira altamente integrada. Os bioquímicos estabeleceram que a transferência de energia entre as células rege, entre outras coisas, a estrutura química das membranas celulares, o código e a transferência da informação hereditária, as funções musculares e nervosas e os caminhos biosintéticos. De fato, as biomoléculas apresentam funções similares em organismos diferentes como bactérias e os seres humanos. O estudo  as biomoléculas, entretanto, apresenta muitas dificuldades. Estas moléculas são muito grandes e exibem uma grande complexidade estrutural; além disso, as reações químicas que elas produzem são normalmente excessivamente rápidas. A separação das duas fitas de DNA, por exemplo, ocorre em um milhonésimo de segundo. Velocidades de reação tão altas são possíveis somente durante a ação de biomoléculas chamadas enzimas. Enzimas são proteínas conhecidas pela sua grande capacidade catalisadora e por sua estrutura química tridimensional. Não surpreendentemente, as descobertas bioquímicas tiveram grande impacto no tratamento de doenças. Muitos erros metabólicos foram detectados como especificamente genéticos. Outras doenças são provocadas por disfunções nos caminhos bioquímicos. 

Freqüentemente, os sintomas de uma doença podem ser aliviados utilizando-se drogas, e a descoberta, meios de ação e degradação dos agentes terapêuticos é outra grande área de estudos da bioquímica. Infecções bacterianas podem ser tratadas com sulfonamidas, pinicilinas e tetraciclinas, e a pesquisa das infecções virais revelaram a ineficiência de acicloviral contra o vírus da herpes.  Existe muito interesse nos detalhes da carcinogênese e tratamento quimioterápico do câncer. É sabido que, por exemplo, o câncer pode ser resultado quando moléculas cancerígenas reagem com ácidos nucleicos e proteínas e interferem em sua função normal. Os cientistas desenvolveram métodos que podem identificar moléculas tidas como carcinogênicas. A esperança, é claro, é que o progresso na prevenção e tratamento do câncer irá crescer quando a base bioquímica da doença for totalmente entendida. 

A base molecular dos processos biológicos constitui ferramenta essencial para o desenvolvimento das disciplinas da biologia molecular e biotecnologia. A química desenvolveu métodos para determinar de forma rápida e precisa a estrutura das proteínas e do DNA. Além disso, métodos de laboratório eficientes para a síntese de genes estão sendo estudados. Talvez, a correção das doenças genéticas por substituição dos genes defeituosos por outros normais talvez venha a ser possível. 

Voltar ao topo

Físico-Química

Muitas disciplinas da química focam determinadas classes de materiais que compartilham propriedades químicas e físicas comuns. Outras especialidades podem focalizar não em uma classe de substâncias, mas sim em suas interações e transformações. O mais antigo destes campos é o da físico-química, que procura medir, correlacionar e explicar os aspectos quantitativos dos processos químicos. O químicos anglo-saxão Robert Boyle, por exemplo, descobriu no século XVII que, à temperatura ambiente, o volume de uma determinada quantidade de gás diminui proporcionalmente ao aumento de pressão no sistema. Assim, para um gás em temperatura constante, o produto de seu volume (V) e pressão (P) é igual a uma constante - ou seja, PV = constante. Esta relação aritmética tão simples é válida para quase todos os gases na temperatura ambiente e a pressões iguais ou menores que a atmosférica. Estudos subsequentes mostraram que esta relação perde sua validade a pressões mais altas, mas expressões mais complicadas com uma melhor correlação experimental podem ser desenvolvidas. O descobrimento e a investigação dessas regularidades químicas, também chamadas de leis da natureza, constituem a realidade da físico-química.

Por muito tempo durante o século XVIII, acreditou-se que a fonte da regularidade matemática em sistemas químicos fosse resultado de forças contínuas e campos que cercam os átomos, criando elementos químicos e compostos. Pesquisas no século XX, entretanto, mostraram que o comportamento químico é melhor interpretado pelo modelo da mecânica quântica que das estruturas atômica e molecular. A área da físico-química que está largamente empenhada nesse sentido é a química teórica. Químicos teóricos fazem uso extensivo de computadores para ajudá-los a resolver complexas equações matemáticas. Outras áreas de interesse da físico-química incluem a termodinâmica, que lida com o relacionamento entre calor e outras formas de energia, e a cinética química, que procura medir e entender as velocidades das reações químicas. 

A eletroquímica investiga a relação entre corrente elétrica e as mudanças químicas. A passagem de uma corrente elétrica através de uma solução química provoca mudanças nos constituintes das substâncias que podem ser, inclusive, reversíveis - isto é, sob diferentes condições as substâncias alteradas vão promover uma corrente elétrica. Baterias comuns contém substâncias químicas que, quando colocadas em contato através de um circuito elétrico fechado, liberarão corrente elétrica a uma voltagem constante até que essas substâncias sejam consumidas. Atualmente existe muito interesse em instrumentos que possam utilizar energia solar para promover reações químicas cujos produtos sejam capazes de estocar energia. A descoberta destes instrumentos poderiam tornar possível a utilização em massa da energia solar.  

Existem muitas outras disciplinas além da físico-química que estão mais preocupadas com as propriedades gerais das substâncias e suas interações entre elas que com as substâncias propriamente ditas. A fotoquímica é uma especialização que investiga as interações da luz com a matéria. Reações químicas iniciadas pela absorção da luz podem ser muito diferente daquelas que ocorrem de outras maneiras. A vitamina D, por exemplo, é formana no corpo humano quando o esteróide ergosterol absorve radiação solar; ergosterol se transforma em vitamina D no escuro. 

Uma divisão da físico-química que está crescendo rapidamente é a química de superfície. Ela examina as propriedades químicas das superfícies, recorrendo freqüentemente a instrumentos que possam fornecer todas as informações dessas superfícies. Sempre que um sólido é exposto a um líquido ou um gás, a reação ocorre inicialmente em sua superfície, e como resultado suas propriedades podem mudar dramaticamente. Alumínio é um caso típico; ele é resistente a corrosão justamente porque a superfície do metal puro reage com oxigênio para formar um filme de óxido de alumínio, que serve como barreira protetora ao interior do metal de uma futura oxidação. Muitos catalisadores executam sua função fornecendo uma superfície reativa onde as substâncias possam efetivamente reagir. 

Voltar ao topo

A Metodologia da Química

A química é uma ciência cumulativa. Durante os séculos, o número de observações e fenômenos estudados cresceu largamente. Entretanto, nem todas as hipóteses e descobertas são imutáveis. Algumas delas são descartadas quando novas observações ou explicações mais satisfatórias surgem. Durante esse tempo, a química teve um grande espectro de modelos explicativos para fenômenos químicos que foram questionados e melhorados. Eles agora têm o título de teorias, pedaços interconectados de ferramentas explicativas que se correlacionam bem com os fenômenos observados. Quando novas descobertas são feitas, elas são incorporadas a teorias existentes sempre que possível. Entretanto, como ilustra a descoberta de supercondutores a altas temperaturas, em 1986, as teorias aceitas nunca são suficientes para predizer o curso de futuras descobertas. A descoberta de mudanças vão continuar possuindo papel de destaque no futuro da sofisticação teórica.

Voltar ao topo

Química e Sociedade

Pelos primeiros dois terços do século XX, a química foi vista por muitos como a ciência do futuro. O potencial dos produtos químicos para o enriquecimento das sociedades pareceu ser ilimitado. Maior ainda, entretanto, e especialmente na mente do público em geral, os aspectos negativos da química vieram à tona. O despejo de lixo químico em locais de capacidade limitada resultaram em problemas ambientais e de saúde pública de enormes proporções. O uso legítimo de drogas para tratamentos médicos supervisionados de certas doenças foi corrompido pelo mau uso de drogas que alteram o comportamento individual. A palavra químico foi usada de maneira pejorativa. Houve, como resultado, a preocupação de que os benefícios trazidos pelo uso do conhecimento químico não compensassem os riscos. 

É relativamente fácil subestimar o papel central da química na sociedade moderna, mas os produtos químicos são essenciais caso a população mundial necessite ser agasalhada, alojada e alimentada. As reservas mundiais de combustíveis fósseis serão eventualmente esgotadas, e novos processos e materiais químicos promoverão uma fonte alternativa de energia. A conversão de energia solar em formas mais concentradas e de fácil utilização, por exemplo, levará a grandes descobertas na química. À longo prazo, soluções aceitáveis para controle e diminuição da poluição não serão possíveis sem o conhecimento químico. Essa verdade é expressa pelo aforismo "problemas químicos requerem soluções químicas". A intuição química levará a um melhor entendimento do comportamento dos materiais sintéticos e naturais e à descoberta de novas substâncias que ajudarão as gerações futuras a melhor suprir suas necessidades e lidar com seus problemas. 

Voltar ao topo